Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 484: 116881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437958

RESUMEN

Pain has a negative impact on public health, reducing quality of life. Unfortunately, current treatments are not fully effective and have adverse effects. Therefore, there is a need to develop new analgesic compounds. Due to promising results regarding the antinociceptive effect of N-(3-(phenylselanyl)prop-2-in-1-yl)benzamide (SePB), this study aimed to evaluate the participation of the dopaminergic and noradrenergic systems in this effect in mice, as well as its toxicity. To this, the antagonists sulpiride (D2/D3 receptor antagonist, 5 mg/kg), SCH-23390 (D1 receptor antagonist, 0.05 mg/kg), prazosin (α1 adrenergic receptor antagonist, 0.15 mg/kg), yohimbine (α2-adrenergic receptors, 0.15 mg/kg) and propranolol (non-selective ß-adrenergic antagonist, 10 mg/kg) were administered intraperitoneally to mice 15 min before SePB (10 mg/kg, intragastrically), except for propranolol (20 min). After 26 min of SePB administration, the open field test was performed for 4 min to assess locomotor activity, followed by the tail immersion test to measure the nociceptive response. For the toxicity test, animals received a high dose of 300 mg/kg of SePB. SePB showed an increase in the latency for nociceptive response in the tail immersion test, and this effect was prevented by SCH-23390, yohimbine and propranolol, indicating the involvement of D1, α2 and ß-adrenergic receptors in the antinociceptive mechanism of the SePB effect. No changes were observed in the open field test, and the toxicity assessment suggested that SePB has low potential to induce toxicity. These findings contribute to understanding SePB's mechanism of action, with a focus on the development of new alternatives for pain treatment.


Asunto(s)
Propranolol , Calidad de Vida , Ratones , Animales , Propranolol/farmacología , Propranolol/uso terapéutico , Analgésicos/toxicidad , Dolor/tratamiento farmacológico , Norepinefrina , Yohimbina/toxicidad , Yohimbina/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Dopamina , Sulpirida , Receptores Adrenérgicos alfa 2
2.
Clin Transl Med ; 11(4): e397, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931975

RESUMEN

Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through ß adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.


Asunto(s)
Neuronas Adrenérgicas/patología , Enfermedad de Alzheimer/patología , Terapia por Estimulación Eléctrica , Enfermedad de Alzheimer/terapia , Animales , Neuronas Colinérgicas/patología , Terapia por Estimulación Eléctrica/métodos , Humanos , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo
3.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923533

RESUMEN

It has been established that the selective α2A adrenoceptor agonist guanfacine reduces hyperactivity and improves cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD). The major mechanisms of guanfacine are considered to involve the activation of the postsynaptic α2A adrenoceptor of glutamatergic pyramidal neurons in the frontal cortex, but the effects of chronic guanfacine administration on catecholaminergic and glutamatergic transmissions associated with the orbitofrontal cortex (OFC) are yet to be clarified. The actions of guanfacine on catecholaminergic transmission, the effects of acutely local and systemically chronic (for 7 days) administrations of guanfacine on catecholamine release in pathways from the locus coeruleus (LC) to OFC, the ventral tegmental area (VTA) and reticular thalamic-nucleus (RTN), from VTA to OFC, from RTN to the mediodorsal thalamic-nucleus (MDTN), and from MDTN to OFC were determined using multi-probe microdialysis with ultra-high performance liquid chromatography. Additionally, the effects of chronic guanfacine administration on the expression of the α2A adrenoceptor in the plasma membrane fraction of OFC, VTA and LC were examined using a capillary immunoblotting system. The acute local administration of therapeutically relevant concentrations of guanfacine into the LC decreased norepinephrine release in the OFC, VTA and RTN without affecting dopamine release in the OFC. Systemically, chronic administration of therapeutically relevant doses of guanfacine for 14 days increased the basal release of norepinephrine in the OFC, VTA, RTN, and dopamine release in the OFC via the downregulation of the α2A adrenoceptor in the LC, OFC and VTA. Furthermore, systemically, chronic guanfacine administration did not affect intrathalamic GABAergic transmission, but it phasically enhanced thalamocortical glutamatergic transmission. The present study demonstrated the dual actions of guanfacine on catecholaminergic transmission-acute attenuation of noradrenergic transmission and chronic enhancement of noradrenergic transmission and thalamocortical glutamatergic transmission. These dual actions of guanfacine probably contribute to the clinical effects of guanfacine against ADHD.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Guanfacina/farmacología , Corteza Prefrontal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Tálamo/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Guanfacina/administración & dosificación , Guanfacina/uso terapéutico , Masculino , Norepinefrina/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Tálamo/metabolismo , Tálamo/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105703

RESUMEN

Quantitative Structure Activity Relationship (QSAR) models can inform on the correlation between activities and structure-based molecular descriptors. This information is important for the understanding of the factors that govern molecular properties and for designing new compounds with favorable properties. Due to the large number of calculate-able descriptors and consequently, the much larger number of descriptors combinations, the derivation of QSAR models could be treated as an optimization problem. For continuous responses, metrics which are typically being optimized in this process are related to model performances on the training set, for example, R2 and QCV2. Similar metrics, calculated on an external set of data (e.g., QF1/F2/F32), are used to evaluate the performances of the final models. A common theme of these metrics is that they are context -" ignorant". In this work we propose that QSAR models should be evaluated based on their intended usage. More specifically, we argue that QSAR models developed for Virtual Screening (VS) should be derived and evaluated using a virtual screening-aware metric, e.g., an enrichment-based metric. To demonstrate this point, we have developed 21 Multiple Linear Regression (MLR) models for seven targets (three models per target), evaluated them first on validation sets and subsequently tested their performances on two additional test sets constructed to mimic small-scale virtual screening campaigns. As expected, we found no correlation between model performances evaluated by "classical" metrics, e.g., R2 and QF1/F2/F32 and the number of active compounds picked by the models from within a pool of random compounds. In particular, in some cases models with favorable R2 and/or QF1/F2/F32 values were unable to pick a single active compound from within the pool whereas in other cases, models with poor R2 and/or QF1/F2/F32 values performed well in the context of virtual screening. We also found no significant correlation between the number of active compounds correctly identified by the models in the training, validation and test sets. Next, we have developed a new algorithm for the derivation of MLR models by optimizing an enrichment-based metric and tested its performances on the same datasets. We found that the best models derived in this manner showed, in most cases, much more consistent results across the training, validation and test sets and outperformed the corresponding MLR models in most virtual screening tests. Finally, we demonstrated that when tested as binary classifiers, models derived for the same targets by the new algorithm outperformed Random Forest (RF) and Support Vector Machine (SVM)-based models across training/validation/test sets, in most cases. We attribute the better performances of the Enrichment Optimizer Algorithm (EOA) models in VS to better handling of inactive random compounds. Optimizing an enrichment-based metric is therefore a promising strategy for the derivation of QSAR models for classification and virtual screening.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Algoritmos , Bases de Datos Farmacéuticas , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1/química , Humanos , Modelos Lineales , Receptor Muscarínico M3/química , Receptor de Serotonina 5-HT2C/química , Receptores Adrenérgicos alfa 2/química , Receptores de Dopamina D1/química , Máquina de Vectores de Soporte
5.
Exp Neurol ; 333: 113428, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32745472

RESUMEN

Chronic pain is one of the most challenging and debilitating symptoms to manage after traumatic brain injury (TBI), yet the underlying mechanisms remain elusive. The disruption of normal endogenous pain control mechanisms has been linked to several forms of chronic pain and may play a role in pain after TBI. We hypothesized therefore that dysfunctional descending noradrenergic and serotonergic pain control circuits may contribute to the loss of diffuse noxious inhibitory control (DNIC), a critical endogenous pain control mechanism, weeks to months after TBI. For these studies, the rat lateral fluid percussion model of mild TBI was used along with a DNIC paradigm involving a capsaicin-conditioning stimulus. We observed sustained failure of the DNIC response up to 180-days post injury. We confirmed, that descending α2 adrenoceptor-mediated noradrenergic signaling was critical for endogenous pain inhibition in uninjured rats. However, augmenting descending noradrenergic signaling using reboxetine, a selective noradrenaline reuptake inhibitor, failed to restore DNIC after TBI. Furthermore, blocking serotonin-mediated descending signaling using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine was also unsuccessful at restoring endogenous pain modulation after TBI. Unexpectedly, increasing descending serotonergic signaling using the selective serotonin reuptake inhibitor escitalopram and the serotonin-norepinephrine reuptake inhibitor duloxetine restored the DNIC response in TBI rats at both 49- and 180- days post injury. Consistent with these observations, spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine eliminated the effects of escitalopram. Intact α2 adrenoceptor signaling, however, was not required for the serotonin-mediated restoration of DNIC after TBI. These results suggest that TBI causes maladaptation of descending nociceptive signaling mechanisms and changes in the function of both adrenergic and serotonergic circuits. Such changes could predispose those with TBI to chronic pain.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Control Inhibidor Nocivo Difuso/efectos de los fármacos , 5,7-Dihidroxitriptamina/farmacología , Inhibidores de Captación Adrenérgica/farmacología , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Capsaicina/farmacología , Dolor Crónico/etiología , Clorhidrato de Duloxetina/farmacología , Masculino , Vías Nerviosas/fisiopatología , Norepinefrina , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reboxetina/farmacología , Receptores Adrenérgicos alfa 2 , Serotonina , Serotoninérgicos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
6.
Balkan Med J ; 37(4): 189-195, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126746

RESUMEN

Background: Moringa peregrina (M. peregrina) is an edible, drought-resistant tree that is native to semi-arid countries. It is used as a painkiller in folk medicine. Aims: To study the antinociceptive effects of the leaf extract of M. peregrina in mice. Study Design: Animal experimentation. Methods: We employed thermal (hot plate and tail-immersion tests) and chemical (writhing and formalin tests) pain models in male BALB/c mice (eight animals per group) to investigate the mechanisms involved in the antinociceptive actions of M. peregrina. Additionally, we identified the chemical constituents present in the extract of M. peregrina by using liquid chromatography-mass spectrometry analysis, and predicted the possible active constituents that interact with the receptor based on molecular docking simulations. Results: In the writhing test, 200 mg/kg of M. peregrina extract restricted abdominal cramps by up to 55.97% (p<0.001). Further, it reduced the time of paw-licking in the early and late phases of formalin test by up to 56.8% and 65.5%, respectively, as compared to the percentage inhibitions of 50.5% and 48.4% produced by 30 mg/kg diclofenac sodium in the early and late phases, respectively (p<0.05). This effect was abrogated by yohimbine (1 mg/kg, intraperitoneally), but not by methysergide (5 mg/kg, intraperitoneally), in the late phase only, which indicates that the action of M. peregrina in formalin test is not mediated by 5-HT2 serotonin receptors, but rather via α2-adrenergic receptors. In the hot plate test, but not on tail-immersion test, the high dose (400 mg/kg) of the extract increased the latency time after 30 minutes of its administration. Yohimbine antagonized the action of M. peregrina in the hot plate test. Based on LC-MS analysis, the major constituents found in M. peregrina methanolic extract were chrysoeriol 7-O-diglucoside, lupeol acetate, quercetin, and rutin. Depending on the molecular docking results, the activity of M. peregrina extract could be due to the binding of chrysoeriol 7-O-diglucoside, quercetin, and rutin to the α2-adrenergic receptor. Conclusion: Interaction with the α2-adrenergic receptor serves as a possible mechanism of the M. peregrina analgesic effect.


Asunto(s)
Moringa , Dolor/tratamiento farmacológico , Receptores Adrenérgicos alfa 2/uso terapéutico , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Manejo del Dolor/métodos , Manejo del Dolor/normas , Manejo del Dolor/estadística & datos numéricos , Extractos Vegetales/uso terapéutico
7.
Pharmacol Biochem Behav ; 188: 172835, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805289

RESUMEN

Patients with anxiety disorders and posttraumatic stress disorder (PTSD) exhibit exaggerated fear responses and noradrenergic dysregulation. Fear-related responses to α2-adrenergic challenge were therefore studied in DxH C3H/HeJ-like recombinant inbred (C3HLRI) mice, which are a DBA/2J-congenic strain selectively bred for a high fear-sensitized startle (H-FSS). C3HLRI mice showed an enhanced acoustic startle response and immobility in the forced swim test compared to DBA/2J controls. The α2-adrenoceptor antagonist yohimbine (Yoh; 5.0 mg/kg) induced an anxiogenic and the α2-adrenoceptor agonist clonidine (Clon; 0.1 mg/kg) an anxiolytic effect in the open field (OF) in C3HLRI but not DBA/2J mice. In auditory fear-conditioning, Yoh (5.0 mg/kg)-treated C3HLRI mice showed higher freezing during fear recall and extinction learning than DBA/2J mice, and a higher ceiling for the Yoh-induced deficit in fear extinction. No strain differences were observed in exploration-related anxiety/spatial learning or the Clon-induced (0.1 mg/kg) corticosterone surge. A global analysis of the behavioral profile of the two mouse strains based on observed and expected numbers of significant behavioral outcomes indicated that C3HLRI mice showed significantly more often fear- and stress-related PTSD-like behaviors than DBA/2J controls. The analysis of the robustness of significant outcomes based on false discovery rate (FDR) thresholds confirmed significant differences for the strain-Yoh-interactions in the OF center and periphery, the Yoh-induced general extinction deficit, strain differences in conditioned fear levels, and at the dose of 5.0 mg/kg for the Yoh-induced ceiling in freezing levels among others. The current findings are consistent with previous observations showing alterations in the central noradrenergic system of C3HLRI mice (Browne et al., 2014, Stress 17:471-83). Based on their behavioral profile and response to α2-adrenergic stimulation, C3HLRI mice are a valuable genetic model for studying adrenergic mechanisms of anxiety disorders and potentially also of PTSD.


Asunto(s)
Estimulación Acústica/métodos , Antagonistas de Receptores Adrenérgicos alfa 2/toxicidad , Miedo/fisiología , Receptores Adrenérgicos alfa 2/fisiología , Reflejo de Sobresalto/fisiología , Estimulación Acústica/efectos adversos , Animales , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Miedo/efectos de los fármacos , Miedo/psicología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Congénicos , Ratones Endogámicos C3H , Ratones Endogámicos DBA , Reflejo de Sobresalto/efectos de los fármacos , Especificidad de la Especie , Yohimbina/toxicidad
8.
Neuron ; 102(4): 745-761.e8, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30922875

RESUMEN

Norepinephrine (NE) is a key biogenic monoamine neurotransmitter involved in a wide range of physiological processes. However, its precise dynamics and regulation remain poorly characterized, in part due to limitations of available techniques for measuring NE in vivo. Here, we developed a family of GPCR activation-based NE (GRABNE) sensors with a 230% peak ΔF/F0 response to NE, good photostability, nanomolar-to-micromolar sensitivities, sub-second kinetics, and high specificity. Viral- or transgenic-mediated expression of GRABNE sensors was able to detect electrical-stimulation-evoked NE release in the locus coeruleus (LC) of mouse brain slices, looming-evoked NE release in the midbrain of live zebrafish, as well as optogenetically and behaviorally triggered NE release in the LC and hypothalamus of freely moving mice. Thus, GRABNE sensors are robust tools for rapid and specific monitoring of in vivo NE transmission in both physiological and pathological processes.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Mesencéfalo/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/genética , Animales , Animales Modificados Genéticamente , Estimulación Eléctrica , Técnicas In Vitro , Microscopía Intravital , Ratones , Microscopía Fluorescente , Optogenética , Ingeniería de Proteínas , Pez Cebra
9.
J Neurophysiol ; 121(1): 96-104, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461363

RESUMEN

Osteoarthritis (OA) is a debilitating conditioning with pain as the major clinical symptom. Understanding the mechanisms that drive OA-associated chronic pain is crucial for developing the most effective analgesics. Although the degradation of the joint is the initial trigger for the development of chronic pain, the discordance between radiographic joint damage and the reported pain experience in patients, coupled with clinical features that cannot be explained by purely peripheral mechanisms, suggest there are often other factors at play. Therefore, this study considers the central contributions of chronic pain, using a monoiodoacetate (MIA) model of OA. Particularly, this study explores the functionality of descending controls over the course of the model by assessing diffuse noxious inhibitory controls (DNIC). Early-phase MIA animals have a functional DNIC system, whereas DNIC are abolished in late-phase MIA animals, indicating a dysregulation in descending modulation over the course of the model. In early-phase animals, blocking the actions of spinal α2-adrenergic receptors completely abolishes DNIC, whereas blocking the actions of spinal 5-HT7 receptors only partially decreases the magnitude of DNIC. However, activating the spinal α2-adrenergic or 5-HT7 receptors in late-phase MIA animals restored DNIC-induced neuronal inhibition. This study confirms that descending noradrenergic signaling is crucial for DNIC expression. Furthermore, we suggest a compensatory increase in descending serotonergic inhibition acting at 5-HT7 receptors as the model progresses such that receptor activation is sufficient to override the imbalance in descending controls and mediate neuronal inhibition. NEW & NOTEWORTHY This study showed that there are both noradrenergic and serotonergic components contributing to the expression of diffuse noxious inhibitory controls (DNIC). Furthermore, although a tonic descending noradrenergic tone is always crucial for the expression of DNIC, variations in descending serotonergic signaling over the course of the model mean this component plays a more vital role in states of sensitization.


Asunto(s)
Control Inhibidor Nocivo Difuso/fisiología , Osteoartritis/metabolismo , Osteoartritis/terapia , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Serotonina/metabolismo , Médula Espinal/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Control Inhibidor Nocivo Difuso/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ácido Yodoacético , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Norepinefrina/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Médula Espinal/efectos de los fármacos
10.
Altern Ther Health Med ; 24(2): 28-35, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28647729

RESUMEN

Context • Pain from osteoarthritis is associated with peripheral nociception and central pain processing. Given the unmet need for innovative, effective, and well-tolerated therapies, many patients, after looking for more satisfactory alternatives, decide to use complementary and alternative modalities. The analgesic mechanism of subcutaneous injections of diluted bee venom into an acupoint is thought to be part of an anti-inflammatory effect and the central modulation of pain processing. Objectives • Using the rat model of collagenase-induced osteoarthritis (CIOA), the study intended to investigate the analgesic effects of bee venom acupuncture (BVA) as they are related to the acupuncture points and dosage used and to determine whether the analgesic mechanisms of BVA for pain were mediated by opioid or adrenergic receptors. Design • Male Sprague-Dawley rats were randomly assigned to one of 19 groups, with n = 10 for each group. Setting • The study was conducted at the East-West Bone and Joint Research Institute at Kyung Hee University (Seoul, South Korea). Intervention • All rats were intra-articularly injected with collagenase solution in the left knee, followed by a booster injection performed 4 d after the first injection. For the groups receiving BVA treatments, the treatment was administered into the ST-36 acupoint, except for 1 group that received the treatment into a nonacupoint. Three BVA intervention groups received no pretreatment with agonists or antagonists; 1 of them received a dose of 1 mg/kg of bee venom into acupoint ST-36, 1 received a dose of 2 mg/kg into acupoint ST-36, and 1 received a dose of 1 mg/kg into a nonacupoint location. For the intervention groups receiving pretreatments, the opioid-receptor or adrenergic-receptor agonists or antagonists were injected 20 min before the 1-mg/kg BVA treatments. Outcome Measures • Changes in the rats' pain thresholds were assessed by evaluation of pain-related behavior, using a tail flick latency unit. Results • The pain reached its maximum value after 4 wk of CIOA induction. The 1-mg/kg ST-36 BVA treatment resulted in a more significant analgesic effect than nonacupoint BVA. Pain-related behavior was more effectively improved by treatment with 1 mg/kg of BVA than with 2 mg/kg of BVA. The analgesic effects of the BVA were not synergistic with the agonist pretreatments with the µ-, δ-, or κ-opioid receptors or with the α1-, α2-, and ß-adrenergic receptors. The analgesic effects of the BVA were not decreased by the antagonist pretreatments for the µ- or κ-opioid receptors or for the α1- or ß-adrenergic receptors. The ST-36-BVA-induced analgesia was inhibited by the antagonist pretreatments for the δ-opioid receptor and the α2-adrenergic receptor. Conclusion • The ST-36 BVA treatment exerted an analgesic effect on CIOA-induced pain through the partial involvement of the δ-opioid and α2-adrenergic receptors.


Asunto(s)
Terapia por Acupuntura , Analgésicos , Venenos de Abeja , Osteoartritis/terapia , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos/administración & dosificación , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Venenos de Abeja/administración & dosificación , Venenos de Abeja/farmacología , Venenos de Abeja/uso terapéutico , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
11.
Toxins (Basel) ; 9(11)2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29088102

RESUMEN

Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg), but not α1-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor.


Asunto(s)
Terapia por Acupuntura , Venenos de Abeja/uso terapéutico , Hiperalgesia/terapia , Neuralgia/terapia , Receptores Adrenérgicos alfa 2/fisiología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos , Venenos de Abeja/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Idazoxan/farmacología , Masculino , Meliteno/farmacología , Meliteno/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/fisiopatología , Paclitaxel , Fosfolipasas A2/farmacología , Fosfolipasas A2/uso terapéutico , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
12.
J Physiol ; 595(22): 6923-6937, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28948610

RESUMEN

KEY POINTS: The effects of noradrenaline on excitatory synaptic transmission to regular spiking (excitatory) cells as well as regular spiking non-pyramidal and fast spiking (both inhibitory) cells in cortical layer 4 were studied in thalamocortical slice preparations, focusing on vertical input from thalamus and layer 2/3 in the mouse barrel cortex. Excitatory synaptic responses were suppressed by noradrenaline. However, currents induced by iontophoretically applied glutamate were not suppressed. Further, paired pulse ratio and coefficient of variation analysis indicated the site of action was presynaptic. Pharmacological studies indicated that the suppression was mediated by the α2- adrenoceptor. Consistent with this, involvement of α2A -adrenoceptor activation in the synaptic suppression in excitatory and inhibitory cells was confirmed by the use of α2A -adrenoceptor knockout mice. ABSTRACT: The mammalian neocortex is widely innervated by noradrenergic (NA) fibres from the locus coeruleus. To determine the effects of NA on vertical synaptic inputs to layer 4 (L4) cells from the ventrobasal thalamus and layer 2/3 (L2/3), thalamocortical slices were prepared and whole-cell recordings were made from L4 cells. Excitatory synaptic responses were evoked by electrical stimulation of the thalamus or L2/3 immediately above. Recorded cells were identified as regular spiking, regular spiking non-pyramidal or fast spiking cells through their firing patterns in response to current injections. NA suppressed (∼50% of control) excitatory vertical inputs to all cell types in a dose-dependent manner. The presynaptic site of action of NA was suggested by three independent studies. First, responses caused by iontophoretically applied glutamate were not suppressed by NA. Second, the paired pulse ratio was increased during NA suppression. Finally, a coefficient of variation (CV) analysis was performed and the resultant diagonal alignment of the ratio of CV-2 plotted against the ratio of the amplitude of postsynaptic responses suggests a presynaptic mechanism for the suppression. Experiments with phenylephrine (an α1 -agonist), prazosin (an α1 -antagonist), yohimbine (an α2 -antagonist) and propranolol (a ß-antagonist) indicated that suppression was mediated by the α2 -adrenoceptor. To determine whether the α2A -adrenoceptor subtype was involved, α2A -adrenoceptor knockout mice were used. NA failed to suppress EPSCs in all cell types, suggesting an involvement of the α2A -adrenoceptor. Altogether, we concluded that NA suppresses vertical excitatory synaptic connections in L4 excitatory and inhibitory cells through the presynaptic α2A -adrenoceptor.


Asunto(s)
Fibras Adrenérgicas/fisiología , Potenciales Postsinápticos Excitadores , Neocórtex/fisiología , Neuronas/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Tálamo/fisiología , Fibras Adrenérgicas/efectos de los fármacos , Fibras Adrenérgicas/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2 , Antagonistas Adrenérgicos beta/farmacología , Animales , Ácido Glutámico/farmacología , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Norepinefrina/farmacología , Fenilefrina/farmacología , Prazosina/farmacología , Propranolol/farmacología , Tálamo/citología , Tálamo/metabolismo , Yohimbina/farmacología
13.
BMC Syst Biol ; 11(1): 65, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659168

RESUMEN

BACKGROUND: α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS: The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS: α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the ß-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.


Asunto(s)
Perfilación de la Expresión Génica , Músculo Liso Vascular/citología , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Dexmedetomidina/farmacología , Evaluación Preclínica de Medicamentos , Cinética , Análisis de Secuencia por Matrices de Oligonucleótidos , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
14.
Eur J Pharmacol ; 792: 54-62, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27793651

RESUMEN

Chronic inflammatory process(es) contributes to changes in vascular function in a variety of diseases. Sympathetic nerve-mediated responses in blood vessels play a pivotal role in regular physiological functions. We tested the hypothesis that sympathetic neuro-effector function will be altered as consequence of inflammatory state. Sympathetic nerve-mediated contractions and alpha adrenergic receptor expressions were evaluated in isolated caudal arteries of rats treated with saline and Complete Freund's adjuvant (CFA). While CFA-treated animals had significantly higher plasma levels of tumor necrosis factor-alpha compared to saline, blood pressure remained unchanged. Immunofluorescence revealed increased expression of ionized calcium adapter binding molecule-1 in the adventitia of blood vessels from CFA-treated animals compared to saline. In isolated arteries, electrical field stimulations between 1.25 and 40Hz resulted in frequency-dependent contractions that wasabolished by tetrodotoxin. Neurogenic contractions from CFA groups were significantly greater than saline. While the presence of alpha1-adrenoceptor antagonist (prazosin) significantly inhibited contractions at lower frequencies of stimulation (1.25-5Hz) in isolated arteries of CFA-treated rats compared to controls, alpha2-adrenoceptor antagonist (rauwolscine) had modest effects. Inhibition of neuronal reuptake by cocaine comparably enhanced field-stimulated responses in vessels of experimental and control animals. Immunofluorescence revealed a difference in expression of alpha1- and alpha2-adrenoceptors in the endothelium of blood vessels of CFA compared to saline controls. Collectively, our observations lend support to enhanced neurogenic contractions in blood vessels of inflamed animals possibly attributing to alterations in responsiveness and/or distribution of post-junctional alpha1-adrenoceptors.


Asunto(s)
Aorta/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Vasoconstricción , Animales , Aorta/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Cocaína/farmacología , Dioxanos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Proteínas de Microfilamentos/metabolismo , Prazosina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre , Vasoconstricción/efectos de los fármacos , Yohimbina/farmacología
15.
Mol Med Rep ; 14(5): 4723-4728, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27748811

RESUMEN

Danggui-Sayuk-Ga-Osuyu-Senggang-Tang (DSGOST), one of the traditional Chinese medicines, has long been prescribed for patients suffering from Raynaud phenomenon (RP) in Northeast Asian countries, including China, Japan and Korea. Although a previous in vitro study from our laboratory revealed that DSGOST prevents cold (25˚C)­induced RhoA activation and endothelin­1 (ET­1) production in endothelial cells (ECs), the mechanisms by which DSGOST is able to alleviate the symptoms of RP have yet to be fully elucidated. The present study aimed to demonstrate that DSGOST regulates RhoA­mediated pathways in cold­exposed pericytes. In pericytes, DSGOST amplified cold­induced RhoA activation, while markedly reducing ET­1­induced RhoA activation. Additionally, DSGOST­mediated regulation of RhoA was closely associated with Rho­associated, coiled­coil­containing protein kinase 1 (ROCK1)/testis­specific kinase 1 (TESK1)/PDXP, but not with LIM domain kinase 1/2 (LIMK1/2), cofilin and myosin light chain (MLC). Thus, DSGOST activation of RhoA/ROCK1/TESK1/PDXP in cold­exposed pericytes appeared to be crucial for treating vessel contraction. In addition, the DSGOST effect on the RhoA­mediated pathway in cold­induced human umbilical vein endothelial cells or human dermal microvascular endothelial cells was similar to that in ET­1­treated pericytes, but not in cold­induced pericytes. The results of the present study further confirmed that DSGOST inhibits cold­induced contraction of the mouse tail vein in vivo. Furthermore, DSGOST treatment reduced cold­induced expression of the α2c­adrenergic receptor in mouse tail vessels. Therefore, the data in the present study suggest that DSGOST may be useful for the treatment of RP­like disease.


Asunto(s)
Frío , Medicamentos Herbarios Chinos/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Endotelina-1/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Psychopharmacology (Berl) ; 233(21-22): 3779-3785, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27557950

RESUMEN

RATIONALE: Epilepsy is a debilitating seizure disorder that affects approximately 50 million people. Noradrenaline reduces neuronal excitability, has anticonvulsant effects and is protective against seizure onset. OBJECTIVE: We investigated the role of α2-adrenoceptors in vivo in a neonatal domoic acid (DOM) rat model of epilepsy. METHODS: We injected male Sprague-Dawley rats daily from postnatal day 8-14 with saline or one of two sub-convulsive doses, 20 µg/kg (DOM20) or 60 µg/kg (DOM60) DOM, an AMPA/kainate receptor agonist. The rats were observed in open field, social interaction and forced swim tests at day 50, 75 and 98, respectively. At ~120 days of age, four rats per group were injected and scanned with [11C]yohimbine, an α2-adrenoceptor antagonist, and scanned in a Mediso micro positron emission tomography (PET) scanner to measure α2-adrenoceptor binding. RESULTS: DOM60-treated rats spent more time in the periphery during the open field test and had a significant 26-33 % reduction in [11C]yohimbine binding in the hypothalamus, hippocampus and orbital prefrontal cortex compared to saline-treated rats. On the other hand, DOM20 rats had a significant 34-40 % increase in [11C]yohimbine binding in the hypothalamus, amygdala and entorhinal cortex compared to saline-treated rats, with no obvious behavioural differences. CONCLUSIONS: The current data clearly indicate that low concentrations of DOM given to rats in their second week of life induces long-term changes in α2-adrenoceptor binding in rat brain that may have relevance to the progression of an epilepsy phenotype.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2 , Encéfalo/efectos de los fármacos , Epilepsia/metabolismo , Ácido Kaínico/análogos & derivados , Fármacos Neuromusculares Despolarizantes/farmacología , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Yohimbina , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Radioisótopos de Carbono , Epilepsia/inducido químicamente , Epilepsia/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ácido Kaínico/farmacología , Masculino , Tomografía de Emisión de Positrones , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Radiofármacos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo
17.
J Complement Integr Med ; 13(3): 275-287, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27276531

RESUMEN

BACKGROUND: Mangifera indica (Anacardiaceae) is an important herb in the traditional African and Ayurvedic medicines. The stem barks are used in the treatment of hypertension, insomnia, tumour, depression, rheumatism and as a tonic. This study was carried out to investigate antidepressant- and anxiolytic-like effect of the hydroethanol stem bark extract of M. indica (HeMI) in mice. METHODS: HeMI (12.5-100 mg/kg, p.o.) was administered 1 h before subjecting the animal to the forced swim test (FST), tail suspension test (TST) and elevated plus maze tests (EPM). RESULTS: HeMI (12.5-100 mg/kg, p.o.) treatment produced significant reduction in immobility time [F(6.56)=8.35, p<0.001], [F(6,56)=7.55, p<0.001] in the FST and TST, respectively. Moreover, co-administration of sub-therapeutic doses of imipramine or fluoxetine with HeMI (3.125 mg/kg) elicited significant reduction in time spent immobile in the FST. However, pretreatment of mice with parachlorophenylalanine, metergoline, yohimbine or sulpiride abolished the antidepressant-like effect elicited by HeMI. In the EPM, HeMI produced significant [F(5,42)=8.91, p<0.001] increase in open arms exploration by 75.55 % and this effect was blocked by pretreatment of mice with flumazenil or metergoline. CONCLUSIONS: Findings from this study showed antidepressant-like effect of M. indica through interaction with 5-HT2 receptor, α2-adrenoceptor and dopamine D2-receptors. Also, an anxiolytic-like effect through its affinity for 5-HT2 and benzodiazepine receptors. Hence, M. indica could be a potential phytotherapeutic agent in the treatment of mixed anxiety-depressive illness.


Asunto(s)
Trastornos de Ansiedad/metabolismo , Ansiedad/metabolismo , Depresión/metabolismo , Trastorno Depresivo/metabolismo , Mangifera , Extractos Vegetales/farmacología , Receptores de Amina Biogénica/metabolismo , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Masculino , Metergolina/farmacología , Ratones , Fitoterapia , Corteza de la Planta , Extractos Vegetales/uso terapéutico , Tallos de la Planta , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Sulpirida/farmacología , Yohimbina/farmacología
18.
Neuroscience ; 324: 420-9, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27001177

RESUMEN

Neuropathic pain is treated using serotonin norepinephrine reuptake inhibitors with mixed results. Pain facilitation mediated by α1-adrenoceptors may be involved, but whether norepinephrine (NE) is tonically released is unclear. The aim of this study was to determine whether NE is tonically released from A7 cells following chronic constriction injury (CCI), and if the lateral hypothalamus (LH) plays a role in this release in male and female rats with nociceptive and neuropathic pain types. Neuropathic groups received left CCI while nociceptive groups remained naïve to injury. Fourteen days later, rats were given intrathecal infusion of either the α1-adrenoceptor antagonist WB4101, the α2-adrenoceptor antagonist yohimbine (74 µg), or normal saline for control. Paw withdrawal latency (PWL) from a thermal stimulus was measured. The generalized estimated equation method was used for statistical analysis. Nociceptive rats given WB4101 had a PWL significantly longer than saline control (7.89 ± 0.63 vs. 5.87 ± 0.52 s), while the PWL of neuropathic rats given WB4101 was 13.20 ± 0.52 s compared to 6.78 ± 0.52 s for the saline control rats. Yohimbine had no significant effect. Microinjection of cobalt chloride (CoCl) in the A7 catecholamine cell group to prevent synaptic transmission blocked the effect of WB4101 in all groups, supporting the notion that spinally descending A7 cells tonically release NE that contributes to α1-mediated nociceptive facilitation. Microinjection of CoCl into the left LH blocked the effect of WB4101 in nociceptive and neuropathic male rats, but had no effect in female rats of either pain type, suggesting differential innervation. These findings indicate that tonic release of NE acts at pronociceptive α1-adrenoceptors, that this effect is greater in rats with nerve damage, and that, while NE comes primarily from the A7 cell group, LH innervation of the A7 cell group is different between the sexes.


Asunto(s)
Hiperalgesia/fisiopatología , Hipotálamo/fisiopatología , Neuralgia/fisiopatología , Dolor Nociceptivo/fisiopatología , Norepinefrina/metabolismo , Caracteres Sexuales , Antagonistas Adrenérgicos alfa/farmacología , Animales , Cobalto/farmacología , Constricción Patológica , Dioxanos/farmacología , Modelos Animales de Enfermedad , Femenino , Calor , Hiperalgesia/tratamiento farmacológico , Hipotálamo/efectos de los fármacos , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Nervio Ciático/lesiones , Yohimbina/farmacología
19.
Yakugaku Zasshi ; 136(1): 101-6, 2016.
Artículo en Japonés | MEDLINE | ID: mdl-26725676

RESUMEN

  De novo molecular design aims to propose molecules exhibiting desired properties and/or activities, as constructed from scratch. Although this approach opposes the widely used virtual screening (VS), the same criteria should be applied, such as ones based on substructure filters, and quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) regression models. QSPR/QSAR, which enables us to predict properties/activities by making use of experimental data, are widely used in academia as well as in industry. Herewith, we present a novel chemical structure generation system by combining fragments whose final chemical structures satisfy the aforementioned criteria. Using inverse analysis, QSPR/QSAR models determine a specific region in chemical space corresponding to a set of desired values by a designer. Chemical structures are generated by combining ring systems, as well as atom fragments, in every possible way until violating the upper bounds of that region. We also show the results of inverse-QSAR analysis for the human Alpha-2A adrenergic receptor. This suggests that our system has features preferable to VS-like methods in terms of the number of generated structures.


Asunto(s)
Diseño de Fármacos , Relación Estructura-Actividad Cuantitativa , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ligandos , Modelos Teóricos , Estructura Molecular , Receptores Adrenérgicos alfa 2
20.
J Neurosci ; 36(1): 204-21, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740662

RESUMEN

Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In µ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and µ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6ß-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser(375) phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. SIGNIFICANCE STATEMENT: Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent sensitization is a phenomenon studied in rodents that has many key features of chronic pain: it is initiated by a variety of noxious stimuli, has indefinite duration, and pain appears in episodes that can be triggered by stress. Here, we show that, during latent sensitization, there is a sustained state of pain hypersensitivity that is continuously suppressed by the activation of µ-, δ-, and κ-opioid receptors and by adrenergic α2A receptors in the spinal cord. Furthermore, we show that the activation of µ-opioid receptors is not due to the release of endogenous opioids, but rather to its ligand-independent constitutive activity.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Hiperalgesia/prevención & control , Hiperalgesia/fisiopatología , Antagonistas de Narcóticos/administración & dosificación , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Opioides/metabolismo , Animales , Adyuvante de Freund , Hiperalgesia/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dimensión del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA